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A computat ional  model  is presented, which enables the identification of  those zones endangered by 
corrosion in a bipolar electrolysis cell stack. The method consists of  two steps: first the potential profile 
in the electrolyser is computed  by numerical solution of  the Laplace equation using the finite difference 
method; then, making use of  the Criss-Cobble  correspondence principle, this profile is related to the 
potential-dependent thermodynamic stabilities of  the respective metals. This may be a useful tool in 
the design of  intermittently operating electrolysers (for example those powered by solar energy). 

Nomenclature R gas constant 
T absolute temperature (K) 

A metal phase U potential (V) 
Ai single A-phase point U0 water decomposition voltage (V) 
B electrolyte phase Got end plate potential (V) 
Bi single B-phase point x, y cartesian coordinates 
F Faraday constant c~ overrelaxation factor 
h mesh interval (m) r/a, r/c anodic or cathodic overpotential (V) 
i local current density (Am 2) ~:A, ~:B electrical conductivity (f~-i m-l )  
i0 exchange current density (Am -2) �9 potential (V) 
j local current across the double layer (A) Om local double layer potential, electrode 
J~A, JiB tangential or normal component of the end (V) 

double layer current (A) qb s local double layer potential, electrolyte 
K A, B phase conductivity ratio end (V) 
m molality tool kg- 

1. Introduction identification of those cell areas endangered by 
corrosion. 

A bipolar electrolyser is an electrical system with a 
complex equivalent circuit; parallel with the desired 
current, at least two other parasitic currents flow 
through it. The corresponding potential and current 
distribution can depend strongly on the operating 
conditions in the cell (fully or partially loaded, or 
switched off). Potential distributions may occur in the 
system such that the catalysts or cell construction 
materials employed suffer mild or even destructive 
corrosion. Corrosion is a rather more serious effect of 
potential distribution than the mere existence of the 
parasitic currents themselves. The main cause of these 
undesirable phenomena are the electrolyte inlet and 
gas outlet channels which, however, must be included 
in a cell design. In order to obtain a better understand- 
ing of the conditions in such a bipolar cell, an analysis 
was carried out, combining thermodynamic stability 
data for the relevant materials with the potential pro- 
file within the electrolyser. With the aid of a two- 
dimensional diagram, such an analysis enables the 

2. Description of the method 

The teclmique will be demonstrated using the advanced 
water electrolyser as an example. Such cells may be 
used in the future in combination with solar cells, 
producing hydrogen, and will run intermittently, 
because of the diurnal cycle. For this reason, this 
class of electrolyser, frequently switched off, will be 
especially prone to corrosive effects. 

The newer, cathodically effective, catalysts are 
based on the structure of Raney nickel. To increase 
efficiency and stability, d-metals with at most five 
electrons in the d-orbital can be added to this catalyst, 
according to the Jaksi6 interpretation of the Brewer- 
Engel valence bond theory Ill. The best known of such 
metals is molybdenum, with its one 5s and five 4d 
electrons. The most common electrolyser construction 
material is steel, with Fe as main component. Fig. 1 
shows the thermodynamically calculated solubility of 
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Fig. 1. Thermodynamic stability of Fe and Mo in 12rn KOH (as 
their solubility m) as a function of the hydrogen overpotential t/H2; 
critical potential Ek. The solubility is determined by the solubility 
product. 

both these metals as log m against the hydrogen over- 
potential, r/H~, for typical operating conditions of 
advanced water electrolysis. Details of this calculation 
will be given in a latter publication; here, it will serve 
to show a model functional connection between the 
maximum solubility of the two metals Fe and Mo and 
the corresponding local hydrogen overpotential ~/,~, 
as a computer-calculated cross-section of the relevant 
Pourbix-type diagram [2]. Figure 1 shows only the 
region of active dissolution of pure Fe and Mo. An 
analogous diagram for the anodic region is unnecess- 
ary, since here one uses passivated pure Ni, whose 
oxohydrate surface has negligible solubility [3]. If the 
thermodynamic stability for a given metal, seen in 
Fig. 1, is coupled with known cell potential profiles, 
those regions endangered by corrosion can then be 
topologically identified. 

3. Ca lcu la t ion  o f  potent ia l  profile 

Figure 2 shows a two-dimensional schematic of a 
bipolar electrolyser with, for the time being, just a 
single plate. The cathodic end is assigned the potential 
zero, while the anodic end plate has potential Uto~. The 
electric double layer comprises point q)s (electrolyte) 
and ~m (metal). For the cathodic double layer we have 
�9 ~,~ (electrolyte) and (Dm, c (metal) and, analogously, for 
the anodic double layer, we have q~,, and �9 . . . .  respec- 
tively. Local potential differences Aq)o = q)~,c - q~m,o 
and Aq~a = �9 .... -q)s,a are unknowns at present. 
However, for zero current 

%,--%a = uo ( l )  

must hold between opposite sides of a bipolar plate. 
U0 here is the pressure- and temperature-dependent 
decomposition voltage of water. This additive c o n -  
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Fig. 2 Two-dimensional schematic of the bipolar electrolyser. The 
electrochemical double layer thickness is 5, assumed to approach 
zero. 

stant U0 can be arbitrarily distributed between Aq5 c 
and A~a, but it is of practical value to assign it fully 
to the anodic side. In this case we have, for the cathodic 
and anodic overpotential at zero local current (i := 0), 
the definition 

ZX% = 0; zX% = U0 (2) 

and, for finite current density [/] > 0 

- ~  = a % ;  ~a = ZX%-- U0 (3) 

The electrolyser schematically shown in Fig. 2 can be 
described in cartesian coordinates. The potential fietd 
in the homogeneous phases is then in the form of the 
Laplace equation in two dimensions 

8200 82qb 
8 x  2 + 8y  2 - 0 (4) 

The numerical solution of this equation for given 
boundary conditions is well understood [4, 5]. Gener- 
ally, four methods are popular: 

1. The resistor network method; the 2-D space is 
modelled as a network of resistors ([6], cited in [7]), 
and Kirchhoff's rule is applied to each mode. The 
resulting matrix equation is solved. Solutions are 
obtained in a matter of seconds, but point spacing 
needs to be rather rough. 

2. The finite difference method (FDM): the field 
space is modelled by a set of sampled points, usually 
spaced equidistant and the Laplace Equation 4 is 
discretized at each point. The solution is the steady 
state to which one converges after a number of iter- 
ations, at each of which each point is updated, so as to 
conform to the discrete form of the Laplace equation. 
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3. The finite element method (FEM): one takes 
advantage of the fact that there are large areas in the 
potential field where large point spacing is acceptable. 
One places a number of sample points in the field such 
that they are close together where the field is strongly 
curved and more widely spaced elsewhere. The total 
number of points is then considerably smaller than 
with the FDM, and the problem - after considerable 
mathematical effort - reduces to the solution of a 
matrix equation of reasonable size. This has been used 
by many workers, among them Holmes and White [7] 
and Dimpault-Darcy and White [8]. 

4. The boundary integral element method (BIEM): 
this promises even smaller matrix equations, only 
points on the field boundaries need to be treated. 
Good references here are [4] and [9], the latter focuss- 
ing on electrochemical applications. 

Method l, the resistor network model, produces 
approximate results. The FDM was chosen by us, 
despite its characteristically long computation times 
(but see below). The cell space is placed in an equi- 
spaced point mesh and both Equation 4 and boundary 
conditions are written as discrete approximations and 
solved iteratively. The discretization schemes can be 
explained with reference to Figs 3 and 4. Applying 
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Fig. 4. Discrete finite difference forms of  the Laplace  equa t ion  in 
two dimensions ,  a t  var ious  places in the cell: (a) homogeneous  field; 
(b) a smooth edge; (c) an inner corner; (d) an outer corner. 

Fig. 3. Schematic  representa t ion  of  b o u n d a r y  
between two Laplacian  regions. 

Kirchhoff's rule to total elemental current - that is, 
multiplying current densities by elemental (in some 
cases fractional) areas - we have, for the homogen- 
eous bulk phase, Fig. 4a, the approximation for 
Equation 4 

4(ID0 = ff~l @ (I)2 -t- (I) 3 "JI- (I)4 ( 5 )  

for a mesh with equal intervals h in both x and y 
(see [4]). 

These equations correspond to the simple mesh star 
arrangement in Fig. 3 (either A or B) (see [4]). For the 
electrolyte/electrode and electrolyte/insulator inter- 
phases, the following conditions hold: for phase A, the 
left-hand star A is appropriate and for phase B, 
the right-hand star B. The interphase runs through the 
points A2, A0 and A4 of star A and through the points 
B2, B0 and B4 of star B. The point A3 lies wholly in 
phase A; point A1 is hypothetical. Symmetrically 
opposite these, phase B has corresponding points B 1 
and hypothetical B3. The potentials q~(A) at point A i 
and ~i(B) at point Bi are referred to the cathodic 
end-plate potential (q~ = 0). Then we have, for the 
local currents JiA and jm, the relations 

1r A h 
J,A = ~-- [qb0(A) -- oi(a)] 

i = 2 , 4  

JiB = ~- ~" [O0(B) - O~(B)] 2h 

K A 
JiA = -ff [~0(A) ~bi(A)]h 

i = 1 , 3  
KB 

Jis = -ff [qb0(B) -- @i(B)]h (6) 

setting unity for the hypothetical third (depth) dimen- 
sion z. The hypothetical currents JlA and J3~, which 
constitute the current going across the interphase, can 
be eliminated by means of the summation 

4 4 

2J iA = ~ J i s  = 0 (7) 
i~ l  i= l  

This yields 

Z J~A = --JlA, 2 JiB = --J3, (8) 
i,i~l i,ir 

Then we have, for the interphase electrolyte/electrode 

J,A = --J3B = J (9) 

while for the interphase electrode/insulator and 
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electrolyte/insulator, respectively, the currents 

j,,~ = O; ~ Jn3 = 0 (10) 
i , i~l i,i#3 

respectively, go to zero. 
For field continuity we set A 0 = 11o. Substituting 

Equation 6 in Equations 9 or 10, respectively, the 
interfacial current j is expressed as a function of the 
potentials Oi(A) and O~(B). The above holds for a 
straight edge, but can be developed analogously for 
the inner and outer corners; for these, the form of 
Equation 6 changes and the mesh star (compare 
Figs 4c and 4d) loses some points. 

For the interphase electrolyte/insulator the approxi- 
mations of Equation 4 have the following forms: an 
edge (Fig. 4b) as 

400 = 201 + 02 + 04 (11) 

an inner corner (Fig. 4c) as 

400 = 201 + 204 (12) 

and an outer corner (Fig. 4d) as 

60o = 201 + 02 + 03 + 204 (13) 

In all cases, Equations 6 were substituted into Equation 
10. For electrode corners or electrode edges, Equation 
6 should be substituted into Equation 9. 

There are alternative ways of deriving these dis- 
cretizations, some of which produce slightly different 
results at corners; since such points are relatively few 
in number, this will not matter. 

Computation proceeds as a sequence of iterations. 
At each iteration, all mesh points are updated, using 
Equation 5 

O; = (01 -{- 02 + 03 -1- 04) /4  (14) 

where 00 is the new point, often written as O0(n + !), 
indicating the next iteration step. Note that our sym- 
bol is not to be confused with a derivative. Upon a 
sufficient number of iterations, the boundary con- 
ditions force the field towards a steady state, where the 
potentials no longer change, that is, the discrete forms 
of the Laplace equation, Equations 5 and 1 to 13, are 
satisfied everywhere where appropriate. 

The straight use of the above discrete approxi- 
mations leads to rather extended computation times. 
It is standard practice to employ overrelaxation: for 
example, the change O; - 0o at a given point at one 
iteration with Equation 14 is increased by a factor ~, 
changing that equation to 

00' = 40~ ((ID I q- 02 "3 L 03  -~ 04  ) __ (0~ - -  1)0o 

05) 
w i t h l  ~< c~ < 2. 

In simple systems, overrelaxation [4, 5] greatly 
speeds convergence and was used in the homogeneous 
phases in the present work. The determination of the 
optimum ~ value has been described [5]. 

The special problems arising in the present context 
are the boundary conditions at the electrolytic double 
layer interphases. Discretization here must take the 
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Fig. 5. Schematic of the kinetic current j between the potential 
points A 0 ((I)0, phase A) and B 0 (q50, phase B). 

following conditions into account: (i) field continuity 
between the two phases; (ii) the Butler-Volmer (i, 0) 
relation. 

Figure 5 shows the situation at the plate/electrolyte 
(A/B) interface. The interface runs along the y-axis, 
the x-axis is normal to this interface and the vertical 
axis represents the potential. There is a potential jump 
AO across the double layer (assumed to have zero 
thickness) and, besides currents normal to the inter- 
face (J3A and JIB), we must allow for currents flowing 
tangential to the interface in both phases A and B. By 
Kirchhoff's rule, the sum of tangential and normal 
currents at a point A0 in phase A must equal the 
corresponding sum in phase B at the point B0, separ- 
ated from A 0 by the double layer thickness. Thus, we 
get the continuity Equation 9 in the form of 

J2A "~ J3A -J7 J4A : J~B + J2~ + J4B = J (16) 

Let the ratio K of the conductivities of the two phases 
A and B be 

K = ~--4-A (17) 
KB 

with ~c the conductivities of the phases. Writing Ai for 
Oi(A ) and Bi for O~(B), Equation 16 leads to the 
continuity condition 

2BI + (B2 + KA2) + 2KA3 + (B 4 + KA4) 

= 4(B0 + KAo) (18) 

when we substitute Equations 6 into it. 
Using the identities 

2B1 =- f~j; B2 + KA2 - f]2; 2KA3 =- f~3; 

B4 + KA4 =-- ~-~4; 11o + KAo =- f~o (19) 

Equation 18 becomes 

f~l + f~2 + f~3 + ~4 = 4f20 (20) 

which is identical in form with Equation 5, so we have 
the equivalent of Equation 14 

no = (f~ + n2 + f~3 + n4)/4 (21) 
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as well as (in principle) the overrelaxation form, 
Equation 15 

n0  = ~ (~'~1 -}- n2  "3i- n3  q- ~'~4) - -  (~X --  1)f)0 (22) 

The expression f)~ calculated from Equation 22, how- 
ever, has a meaning different from the new potential, 
O~, in Equation 15. It is an algebraic operator which 
introduces the information in the Butler-Volmer 
relation and had the following forms, in the case of the 
hydrogen and oxygen electrodes 

H2:f)~ = B0(1 + K) 

2RTKsinh I(KB(2BL + BR + B4--4Bo) ) 
F 4hioH 2 

(23) 

0 2 : ~ ' ~ 0  = B0(1 + K) + KU0 

2RTK (t%(4Bo- B2- 2B3-- B4) ) 
+ ~ sinh-1 ~hi~ 2 

(24) 

The derivation of Equation 23 and 24 proceeds as 
follows. For the hydrogen and oxygen electrodes, 
respectively, Equation 3 can be written as (cf. Fig. 2) 

Acp~ = ~r/c = ~ , ~ -  0~,~ 

- 2RTsinh-~(2@om)F (25) 

A O  a = 1% --~ U 0 : Om, a - -  Os, a 

= Uo + --ff--sinh (26) 

using the Butler-Volmer relations. In these equations, 
transport effects were neglected, which is not unreason- 
able in the case of an electrolyser as assumed here. 

Identifying. the potentials qb m in the metal phase 
with Oo(A ) - A o and �9 s in the solution phase with 
qbo(B) -= Bo, we obtain from Equations 25 and 26 the 
equations 

B0 = A0 + ---if--sinh 1 (25a) 

A0 = Bo + Uo + ~ - - s i n h  -j (26a) 

Fig. 6. Potential profile of a bipolar water elec- 
trolyser. Current density at the end plates: 
4000Am -2. The negative numbers show the~ 
cathodic overpotentials qH2(mV); the positive 
numbers show the anodic overpotentials r/oa(mV ). 
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The local current density i in these equations has 
dimension A m -2. It can therefore be calculated from 
the local currents JlA and J3B in Equations 6 and 9 
(the dimension o f j  is A), by dividing the respective 
expression for j in Equation 9 by the element area hl 
(or �89 according to the geometry of the finite- 
difference element (edge or corner). In this way the 
expressions 

i - j i = j (27) h/2' h 

respectively, are obtained for the current density i. 
Just as in the derivation of Equation 8, the depth 
coordinate z was set at unity hl or �89 By substituting 
9 and 27 into 25a and 26a and noting that 

Bo + Kdo = f~o (28) 

Equations 23 and 24 are obtained. (/OH2 and i0o 2 are the 
respective exchange current densities and h the 
previously defined interval in both x and y). Combin- 
ing Equation 22 with Equations 23 and 24, the 
calculated value f2; then yields the overpotentials r/a 
for the oxygen and r/c for the hydrogen reaction in the 
form of Equation 2 and 3, using the known Butler- 
Volmer relation, assuming negligible transport effects 

o2:,_- - _  t 
(29b) 

Equations 29a and 29b correspond to Equations 25a 
and 26a, respectively. Previous efforts [7] have avoided 
the nonlinearity of the Butler-Volmer relation by 
approximating it by a linearization around working 
potentials. Rousar et al. [9], in fact, state that the 
nonliner relation leads to instabilities in the calcu- 
lation; this was found not to be true in the present 
work, and the use of the correct Butler-Volmer form 
was preferred. 

The calculation of the local thermodynamic stabili- 
ties of individual cell elements should be feasible even 
for stacks of up to 50 units. For this reason, a rapidly 
converging computation method is required. This is 
obtained by the use of overrelaxation (Equation 15), 
although it was found that at the interfaces, cr needed 
to be set equal to unity in Equation 22, which amounts 
to the use of Equation 21, or no overrelaxation. It is 
clear from Equation 22 that overrelaxation allows 
only the operators fli to converge, as a whole. As seen 
from the definitions, however, (Equation i9), the 
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Fig. 7. Two-dimensional schematic of the bipolar electrolyser (a) and its transformation to a circuit analog model (b). 
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Table 1. Input data for the model electrolyser 

e (n) d (m) t (m) 

R1 2.375 0.005 0.019 
R2 1.563 0.004 0.010 
RS 0.022 0.170 0,006 
RM 4.8 x 10 -6 0.170 0.014 
R3 1.563 0.004 0.010 
R4 2.375 0.005 0,019 

Metal resistivity, 
Electrolyte resistivity, 
Temperature 
Current density 

hydrogen 
oxygen 

Overrelaxation factor 
Error limit for an iteration 
u0 

0.005~m 
62.5~m 

373K 
4000Am -~ 
1000Am -~ 

100Am -~ 
1.75 
10 ~ relative 
1.167V 

actual B~ terms will converge with ~ ,  while the A~ are 
all multiplied by the conductivity ratio K; that is, the 
A~ terms converge more slowly by a factor K. For large 
values of K, which is the case with metallic plates, 
convergence is then unacceptably slow and would 
limit the simulations to cell blocks with only a few 
plates. Two strategies were tried out to overcome this 
problem: 

(i) The potential field in the electrodes was assumed 
to be homogeneous although variable; thus the same 
potential holds everywhere within a plate. One can 
thus, initially, consider the plate as two adjacent 
double layers and take the total current at a point on 
one side to be equal to the total current emerging from 
the other at the same plate height (y), adding the 
Butler-Volmer potential jumps appropriately. The 
plate itself is thus left out entirely at this stage. Upon 
convergence, this restriction was relaxed and more 
iterations computed using the proper boundary con- 
ditions, (Equations 16 to 24), yielding the curved 
potential fields within the plates as well. Since this is 
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Fig. 8. Vectorial representation of current flow in a bipolar water 
electrolyser with three bipolar plates. Working mode corresponds to 
Fig. 6. 

the sequential coupling of two only moderately con- 
verging processes, this strategy is suitable for cells with 
only up to about 10 bipolar plates. 

(ii) The electrolyser was modelled as a network 
of voltage sources and resistances, all linear in the 
homogeneous phases, as in [6], while the Butler- 
Volmer relation was allowed at the interfaces. The 
current density at the end plates was set to a certain 
value (e.g. 4000Am-Z). This scheme can be rapidly 
calculated by the mesh current method, using the 
Levenberg- Marquardt algorithm [10, 11] for resistive 
networks. A good approximation of both potential 
distribution and the total cell voltage is obtained 
which, by interpolation into a finer mesh, can then be 
used as the starting state for the actual FDM iter- 
ations for the Laplace equation. With this method, the 
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Fig. 9. Two-dimensional schematic of a bipolar electrolyser with conducting manifolds (a) and its transformation into a circuit analog model 
(b). The unit sections of the conducting manifold are electrically insulated from each other so that they function as bipolar elements. 
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Fig. 10. Topological picture of corrosion sites in the bipolar electrolyser at 100~ in 12 m (10 M) KOH. Current density at the end plates'  
was 4000 A m -2 . Input parameters are listed in Table 1. The numbers indicate the metal solubility as log m (molality). (a) Mo (pure phase); 
(b) Fe (pure phase). 
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number of iterations required is so small that large 
bipolar systems with 50 units can be simulated with 
reasonably short computing times. Nguyen and White 
[12] have used a differrent method of speeding up 
computations: In principle, the discrete expressions 
shown above, Equations 5 and 11 to 14 and the inter- 
face discretizations, applied to all mesh points, result 
in a huge matrix equation. The matrix is, however, 
strongly banded, being mostly pentadiagonal. These 
authors utilized this property and some mathematical 
devices to solve the matrix equation with a standard 
band matrix solver. It is not clear, however, whether 
this is applicable in the present context, in view 
of the rather complex geometry of a bipolar cell 
stack. 

By means of the above discrete equations, the entire 
cell mesh can be solved. Convergence was defined as 
that point, at which the maximum absolute change for 
all points was below some present limit, usually 10 -s 
relative to the total applied cell voltage. Programming 
is straightforward; the computations were carried out 
using an IBM 370 computer in double precision, 
coding in FORTRAN. 

4. Results and discussion 

The two strategies (i) and (ii) yield almost identical 
results. Calculations were checked against measured 
potentials in a bipolar cell block [11] and good agree- 
ment was found. 

Figure 6 shows the potential profile in a cell block 
with three bipolar plates. The geometrical data, resist- 
ances and their transformation into a circuit analog 
model (Fig. 7) are seen in Table 1. The vectorial 
representation of current flow is shown in Fig. 8. 

The method is also usable for bipolar electrolysers 
with conducting manifolds. In this case, the circuit 
analog model is extended by the currents flowing 
through the manifold walls, as shown, for example, by 
Burney and White [13]. Figure 9 shows the corre- 
sponding cell schematic and its transformation into an 
analog model. The computational difficulties are 
considerable in this case, however. For this reason, the 
direct use of multigrid techniques has to be preferred, 
as will be shown in the next contribution. 

When the potential distribution along the electrode 
edges, in the form of overpotentials, is known (see 

Table 2. Potential values and local stabilities" of  Fe and Mo in a bipolar stack with 60 units 

Plate no. Main Local current density (A m 2) 

current 
density Lower Central Upper 
(A m 2) corner part corner 

Local overvoltage (V) 

Lower Central Upper 
corner part corner 

0 cath.  

1 anod.  

cath.  

2 anod.  

cath.  

5 anod.  

cath.  

I E 30 anod.  
cath.  

5 anod .  

cath.  

58 anod.  

cath.  

59 anod.  

cath.  

60 anod .  

- 4 0 3 0  - 13170 - 3710 - 1 3 1 7 0  - 0 . 1 6 6  - 0 . 0 8 9  - 0 . 1 6 6  

3530 730 3710 730 0.129 0.232 0.129 

- 3 4 7 0  - 6 4 0 0  - 3 3 7 0  - 6 4 0 0  - 0 . 1 2 l  - 0 . 0 8 3  - 0 . 1 2 1  

3300 2200 3370 2200 0.199 0.226 0.199 

- 3300 - 4 5 6 0  - 3260 - 4 5 6 0  - 0 . 1 0 0  - 0 . 0 8 1  - 0 . 1 0 0  

3220 3610 3220 3610 0.231 0.223 0.231 

- 3220 - 3750 - 3210 - 3750 - 0 . 0 8 9  - 0 . 0 8 0  - 0 . 0 8 9  

3220 3680 3210 3680 0.232 0.223 0.232 

- 3 2 2 0  - 3720 - 3210 - 3720 - 0 . 0 8 9  - 0 . 0 8 0  - 0 . 0 8 9  

3220 3720 3210 3720 0.232 0.223 0.232 

- 3220 - 3640 - 3 2 2 0  - 3640 - 0 . 0 8 7  - 0 . 0 8 1  - 0 . 0 8 7  

3300 4470 3260 4470 0.244 0.224 0.244 

- 3300 - 2 0 5 0  - 3370 - 2 0 5 0  - 0 . 0 5 8  - 0 . 0 8 3  - 0 . 0 5 8  

3470 6220 3730 6220 0.266 0.226 0.266 

- 3 5 2 0  100 - 3730 100 0.003 - 0 . 0 8 9  0.003 

4030 12750 3730 12750 0.312 0.233 0.312 

Cathode no. log m Fe log m Mo 

Lower Central Upper Lower Central Upper 
corner part corner corner part corner 

0 - 5.601 - 3.520 - 5.601 - 4 . 6 0 6  1.231 - 4.606 

1 - 4.385 - 3.358 - 4.385 - 0.958 1.231 - 0.958 

2 - 3.818 - 3.304 - 3.818 0.744 1.231 0.744 

5 - 3.520 - 3.277 - 3.520 1.231 1.231 1.231 

30 - 3.520 - 3.277 - 3.520 1.231 1.231 1.231 

55 - 3.466 - 3.304 - 3.466 ! .231 1.231 1.231 

58 - 2.683 - 3.358 - 2.683 1.231 1.231 1.231 

59 - 1.894 - 3.520 - 1.894 1.231 1.231 1.231 
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Fig. 6), then the t he rmodynamic  solubilities o f  the 
relevant  metals  (Fig. 1) can be topological ly  intro-  
duced into the electrolyser as a funct ion of  this poten-  
tial distr ibution.  The  characteris t ic  propert ies  of  these 
stabilities are expressed in terms of  the potent ia l  
dependence  o f  the solubilities under  the work ing  con-  
ditions ( temperature ,  pressure,  electrolyte concen-  
tration).  This was calculated,  mak ing  use o f  the Cr iss -  
Cobble  cor respondence  principle [14, 15]; for  example,  
for M o  (catalyst) and Fe (construct ion material)  the 
formulas  are 

1ogmHFeO~- -- 1.115 + 27.023t/Hi (30) 

1ogmMoo42- = 8.851 + 81.069r/H 2 (31) 

Equat ions  30 and 31 are valid for  pure  phases  at  5 a tm 
(pressure electrolysis) and 100~ in 10M K O H .  I f  
Equa t ion  3 is subst i tuted in Equat ions  30 and 31, then 
a direct topological  picture of  local stability of  the 
var ious  mater ia ls  in the b ipolar  stack can be obtained,  
as well as the potent ia l  profile (see for  example  Fig. 10, 
showing a system of  4 units). A cor responding  assign- 
ment  to a stack with 60 units is conta ined in Table  2. 

5. Conclusions 

By the numerical  solution of  the Laplace  equat ion  for 
the potent ia l  field in the region o f  a b ipolar  electrolysis 
block,  potent ia l  profiles can be obta ined  which, in 
conjunct ion with the Pourbaix  d iagrams for  the rele- 
vant  metals  (catalysts, construct ion materials) ,  enable  
the de te rmina t ion  of  those zones in an electrolyser 
endangered by corrosion.  We have been able to show 
that  a combina t ion  o f  a circuit analog model  o f  the 
electrolyser and the discretized Laplace  equat ion  
makes  it possible to compu te  the potent ia l  field even 
for  large b ipolar  cell blocks in two-dimens ional  space. 
The  me thod  can be used in a sufficiently wide current  
density range, so that  both  fully loaded and depolarized 

condi t ions of  the system can be calculated. Thus,  
for  example,  intermit tent ly  opera t ing  electrotysers 
powered  by solar energy can be bet ter  designed. 
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